3.9 Article

Diversity and biofilm-forming capability of bacteria recovered from stainless steel pipes of a milk-processing dairy plant

期刊

DAIRY SCIENCE & TECHNOLOGY
卷 96, 期 1, 页码 27-38

出版社

SPRINGER FRANCE
DOI: 10.1007/s13594-015-0235-4

关键词

Microbial adherence; ARDRA; RAPD; DGGE; Milk-processing plant

资金

  1. CICYT [AGL2011-24300-ALI]
  2. INIA [RM2011-00005-00-00]
  3. Juan de la Cierva Program [JCI-2010-07457]

向作者/读者索取更多资源

Bacteria may adhere to and develop biofilm structures onto dairy surfaces trying to protect themselves from adverse conditions such as pasteurization and CIP processes. Thus, biofilms are considered common sources of food contamination with undesirable bacteria. The purpose of this study was to evaluate the diversity of the microbiota attached to stainless steel surfaces in pre- and post-pasteurization pipe lines of a milk-processing plant. Seventy Gram-positive isolates were identified as Enterococcus faecalis (33), Bacillus cereus (26), Staphylococcus hominis (8), Staphylococcus saprophyticus (2), and Staphylococcus epidermidis-Staphylococcus aureus (1) species. Fifty-five Gram-negative isolates were identified to the species Escherichia coli (18), Klebsiella pneumoniae (13), Acinetobacter calcoaceticus (6), Serratia marcescens (6), Enterobacter spp. (5), Pseudomonas aeruginosa (4), Escherichia vulneris (2), and Proteus mirabilis (1). Fifty-five different strains were detected by the RAPD technique. These were subjected to an in vitro assay to evaluate their biofilm-forming capability. E. faecalis (7), A. calcoaceticus (4), K. pneumoniae (3), S. hominis (3), and P. aeruginosa (2) were the species in which more biofilm producer strains were encountered. The adhered microbiota was also assessed by the PCR-DGGE culture-independent technique. This analysis revealed a greater bacterial diversity than that revealed by culturing methods. In this way, in addition to the bacteria detected by culturing, DNA bands belonging to the genera Chrysobacterium and Streptomyces were also identified. This study emphasizes that knowledge of attached microorganisms to dairy surfaces may help develop strategies to improve optimal operational parameters for pasteurization and CIP processes in dairy plants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据