4.6 Article

Bicarbonate-based carbon capture and algal production system on ocean with floating inflatable-membrane photobioreactor

期刊

JOURNAL OF APPLIED PHYCOLOGY
卷 30, 期 2, 页码 875-885

出版社

SPRINGER
DOI: 10.1007/s10811-017-1285-1

关键词

Microalgae; Mixing; Photobioreactor; Wave energy; Bicarbonate

资金

  1. Fundamental Research Funds for the Central Universities [DUT14RC(3)065]

向作者/读者索取更多资源

This study aims to develop a low-cost microalgae culture system which uses a simple closed vessel as photobioreactor to save manufacturing cost, waves for mixing to save energy cost, and high concentration of bicarbonate for carbon supply to avoid the high cost of CO2 -bubbling pipeline construction on the ocean as well as to control pH by buffering the effect of bicarbonate/carbonate. To test this idea, the alkalihalophilic cyanobacterium Euhalothece sp. was cultured with 1.0 M NaHCO3 in small-scale floating photobioreactors (PBRs) on 10-cm-high artificial waves at first. The final biomass concentration was up to 0.91 and 1.47 g L-1 for indoor and outdoor cultures, respectively. However, the recorded dissolved oxygen (DO) was occasionally over-saturated (> 500% of air saturation), indicating mass transfer problem. k(L)a in these PBRs with different culture depth was measured then, and the results showed great variation, from 0.13 to 4.87 h(-1). At the scale of 1.0 m(2). this floating PBR was made with low-cost membrane and inflatable design. It was placed on the ocean surface and mixed with natural waves. Biomass concentration of 1.63 g L-1 and productivity of 8.27 g m(-2) day(-1) were obtained in this culture. With these results, the feasibility of a low-cost microalgae culture system was proven, which could systematically reduce the cost of photobioreactor manufacturing, operating, and maintenance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据