4.6 Article

Federated Cooperation and Augmentation for Power Allocation in Decentralized Wireless Networks

期刊

IEEE ACCESS
卷 8, 期 -, 页码 48088-48100

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/ACCESS.2020.2979323

关键词

Resource management; Training; Wireless networks; Distributed databases; Data models; Machine learning algorithms; Performance evaluation; Federated learning; power allocation; wireless networks; federated cooperation; federated augmentation

资金

  1. National Science Foundation of China [61871099, 61631005]
  2. Research and Development Program in Key Areas of Guangdong Province [2018B010114001]

向作者/读者索取更多资源

Emerging mobile edge techniques and applications such as Augmented Reality (AR)/Virtual Reality (VR), Internet of Things (IoT), and vehicle networking, result in an explosive growth of power and computing resource consumptions. In the meantime, the volume of data generated at the edge networks is also increasing rapidly. Under this circumstance, building energy-efficient and privacy-protected communications is imperative for 5G and beyond wireless communication systems. The recent emerging distributed learning methods such as federated learning (FL) perform well in improving resource efficiency while protecting user privacy with low communication overhead. Specifically, FL enables edge devices to learn a shared network model by aggregating local updates while keeping all the training processes on local devices. This paper investigates distributed power allocation for edge users in decentralized wireless networks with aim to maximize energy/spectrum efficiency while preventing privacy leakage based on a FL framework. Due to the dynamics and complexity of wireless networks, we adopt an on-line Actor-Critic (AC) architecture as the local training model, and FL performs cooperation for edge users by sharing the gradients and weightages generated in the Actor network. Moreover, in order to resolve the over-fitting problem caused by data leakages in Non-independent and identically distributed (Non-i.i.d) data environment, we propose a federated augmentation mechanism with Wasserstein Generative Adversarial Networks (WGANs) algorithm for data augmentation. Federated augmentation empowers each device to replenish the data buffer using a generative model of WGANs until accomplishing an i.i.d training dataset, which significantly reduces the communication overhead in distributed learning compared to direct data sample exchange method. Numerical results reveal that the proposed federated learning based cooperation and augmentation (FL-CA) algorithm possesses a good convergence property, high robustness and achieves better accuracy of power allocation strategy than other three benchmark algorithms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据