4.6 Article

An Improved Finite Control Set-MPC-Based Power Sharing Control Strategy for Islanded AC Microgrids

期刊

IEEE ACCESS
卷 8, 期 -, 页码 52676-52686

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/ACCESS.2020.2980860

关键词

AC microgrids; current estimator; finite control set; model predictive control; and power sharing control

资金

  1. National Natural Science Foundation of China [51607113]

向作者/读者索取更多资源

Hierarchical linear control scheme is widely used in ac microgrids. However, its transient response is slow and parameter tuning is time-consuming. Finite Control Set-Model Predictive Control (FCS-MPC) strategy has desired dynamic performance. Nevertheless, it requires an additional sensor to measure the inductor current. This article aims to mitigate these problems by introducing an improved FCS-MPC strategy for paralleled Voltage Source Inverters (VSIs). A capacitor current estimator is employed to reduce the extra current sensor in each VSI. The proposed control scheme consists of two loops: voltage reference generation loop and voltage tracking loop. The voltage reference generation loop achieves accurate load power sharing using virtual impedance-based droop control. Thus, communication is unnecessary among parallel VSIs. The voltage tracking loop utilizes a modified FCS-MPC block with capacitor current estimator to regulate the VSI output voltage. In order to verify the concept of the proposed control strategy, an ac microgrid consisting of two paralleled VSIs is implemented in dSPACE DS1202 hardware-in-the-loop platform. Then a single VSI hardware prototype is implemented and tested experimentally. The proposed method has the merits of good extensibility, low system cost and compact structure. Its steady-state performance is competitive with hierarchical linear control, while the transient response is significantly improved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据