4.4 Article

Pore network modeling of phase change in PEM fuel cell fibrous cathode

期刊

JOURNAL OF APPLIED ELECTROCHEMISTRY
卷 47, 期 12, 页码 1323-1338

出版社

SPRINGER
DOI: 10.1007/s10800-017-1126-6

关键词

Pore network model; PEM fuel cell; Phase change; Iterative algorithm; Relative humidity

资金

  1. Natural Sciences and Engineering Research Council of Canada

向作者/读者索取更多资源

A pore network model has been applied to the cathode side of a fuel cell membrane electrode assembly to investigate the mechanisms leading to liquid water formation in the cell. This model includes mass diffusion, liquid water percolation, thermal and electrical conduction to model phase change which is highly dependent on the local morphology of the cathode side. An iterative algorithm was developed to simulate transport processes within the cathode side of PEMFC applying a pseudo-transient pore network model at constant voltage boundary condition. This algorithm represents a significant improvement over previous pore network models that only considered capillary invasion of water from the catalyst layer and provides useful insights into the mechanism of water transport in the electrodes, especially condensation and evaporation. The electrochemical performance of PEMFCs was simulated under different relative humidity conditions to study the effect of water phase change on the cell performance. This model highlights the ability of pore network models to resolve the discrete water clusters in the electrodes which is essential to the two-phase transport behavior especially the transport of water vapor to and from condensed water clusters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据