4.6 Article

Electronic structure of bulk manganese oxide and nickel oxide from coupled cluster theory

期刊

PHYSICAL REVIEW B
卷 101, 期 16, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.101.165138

关键词

-

资金

  1. MURI [FA9550-18-1-0095]
  2. NSF [DGE-1745301]
  3. ONR [N00014-181-2101]
  4. [DE-SC0018140]
  5. [DE-SC0019330]

向作者/读者索取更多资源

We describe the ground- and excited-state electronic structure of bulk MnO and NiO, two prototypical correlated electron materials, using coupled cluster theory with single and double excitations (CCSD). As a corollary, this work also reports an implementation of unrestricted periodic ab initio equation-of-motion CCSD. Starting from a Hartree-Fock reference, we find fundamental gaps of 3.46 and 4.83 eV for MnO and NiO, respectively, for the 16-unit supercell, slightly overestimated compared to experiment, although finite-size scaling suggests that the gap is more severely overestimated in the thermodynamic limit. From the character of the correlated electronic bands we find both MnO and NiO to lie in the intermediate Mott/charge-transfer insulator regime, although NiO appears as a charge transfer insulator when only the fundamental gap is considered. While the lowest quasiparticle excitations are of metal 3d and O 2p character in most of the Brillouin zone, near the Gamma point, the lowest conduction band quasiparticles are of s character. Our study supports the potential of coupled cluster theory to provide high-level many-body insights into correlated solids.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据