4.6 Article

Parasite metacommunities: Evaluating the roles of host community composition and environmental gradients in structuring symbiont communities within amphibians

期刊

JOURNAL OF ANIMAL ECOLOGY
卷 87, 期 2, 页码 354-368

出版社

WILEY
DOI: 10.1111/1365-2656.12735

关键词

amphibians; Bayesian inference; disease ecology; metacommunity; occupancy modelling; parasites; symbionts; trematodes

资金

  1. David and Lucile Packard Foundation
  2. Division of Environmental Biology [0841758, 1149308]
  3. Division of Graduate Education [1144083]
  4. National Institute of Food and Agriculture [2014-67012-22272]
  5. National Institutes of Health [R01GM109499]
  6. Netherlands Organization for Scientific Research [825.11.036]
  7. Directorate For Geosciences
  8. Division Of Earth Sciences [0841758] Funding Source: National Science Foundation
  9. Division Of Environmental Biology
  10. Direct For Biological Sciences [1149308] Funding Source: National Science Foundation

向作者/读者索取更多资源

1. Ecologists increasingly report the structures of metacommunities for free-living species, yet far less is known about the composition of symbiont communities through space and time. Understanding the drivers of symbiont community patterns has implications ranging from emerging infectious disease to managing host microbiomes. 2. Using symbiont communities from amphibian hosts sampled from wetlands of California, USA, we quantified the effects of spatial structure, habitat filtering and host community components on symbiont occupancy and overall metacommunity structure. 3. We built upon a statistical method to describe metacommunity structure that accounts for imperfect detection in survey data-detection error-corrected elements of metacommunity structure-by adding an analysis to identify covariates of community turnover. We applied our model to a metacommunity of eight parasite taxa observed in 3,571 Pacific chorus frogs (Pseudacris regilla) surveyed from 174 wetlands over 5 years. 4. Symbiont metacommunity structure varied across years, showing nested structure in 3 years and random structure in 2 years. Species turnover was most consistently influenced by spatial and host community components. Occupancy generally increased in more southeastern wetlands, and snail (intermediate host) community composition had strong effects on most symbiont taxa. 5. We have used sophisticated but accessible statistical methods to reveal that spatial components-which influence colonization-and host community composition-which mediates transmission-both drive symbiont community composition in this system. These methods allow us to associate broad patterns of community turnover to local, species-level effects, ultimately improving our understanding of spatial community dynamics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据