4.7 Article

Measurement of kinetics and thermodynamics of the thermal degradation for flame retarded materials: Application to EVA/ATH/NC

期刊

JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS
卷 124, 期 -, 页码 130-148

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jaap.2016.12.034

关键词

Ethylene vinyl acetate copolymer; Aluminum tri-hydroxide; Montmorillonite; Thermal conductivity; Heat capacity; Pyrolysis modelling; Diffusion; Fire retardancy; Gasification

资金

  1. European Union [308,391]

向作者/读者索取更多资源

The modelling of the behavior of a material exposed to fire is very complex and needs the coupling of fluid dynamics, combustion, heat and mass transfer, kinetics and so forth. A growing amount of studies and numerical models are reported in this field since the last decade. The aim of these models is to predict the fire behavior of wood, charring or non-charring polymers and even intumescent materials. However, these studies are seldom applied to formulated materials and especially flame retarded materials. In this study, an ethylene-vinyl acetate copolymer was formulated with a flame retardant (aluminum tri-hydroxide) and a synergist (nanoclays). A systematic approach for the characterization of the thermo-physical properties of the material as well as of its optical properties and the heat capacity of the decomposition gases is proposed and applied in this study. It is shown that it is possible to evaluate the input data required for pyrolysis modelling, even for multi decomposition steps materials. It is also shown that the diffusion of the gases inside the material had to be considered on the opposite of the classical assumption found in other studies. Indeed, using low mass diffusivity was the sole way to predict in the same time the temperature distribution and the mass loss rate of the material in a gasification experiments. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据