4.7 Article

Photoelectrochemical Glucose Biosensor Based on the Heterogeneous Facets of Nanocrystalline TiO2/Au/Glucose Oxidase Films

期刊

ACS APPLIED NANO MATERIALS
卷 3, 期 3, 页码 2723-2732

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsanm.0c00086

关键词

TiO2 (001) facets; Au; glucose oxidase; PEC biosensor; nanocrystal engineering

资金

  1. Key Research and Development Project of Hainan Province [ZDYF2018106]
  2. National Natural Science Foundation of China [51762012, 81860373]

向作者/读者索取更多资源

TiO2 single-crystal nanomaterials with highly reactive surfaces have attracted widespread attention due to their fundamental aspects and industrial applications. However, many previous studies have ignored the poor photoelectric efficiency of TiO2 nanomaterials originating from a mismatch in the diffusion distance of electrons and holes as well as migration rates of holes and electrons. Therefore, suppression of hole migration could enhance the photoelectrochemical performance of TiO2. In this work, single-crystal anatase TiO2 nanomaterials with (001) facets were successfully prepared. The results suggested that some (101) facets were retained by the modified fluoride ion crystal facet control process. Subsequently, fluorine-free and Au-containing crystal facets were obtained by annealing and electrochemical deposition. In addition, the propensity for adsorption of Au on a TiO2 (101) surface was verified by first-principles quantum chemical calculations. Electrochemical impedance spectroscopy and UV-visible spectrophotometry showed the presence of a large area (001), conducive to better enzyme affinity. Biosensors prepared by carrier self-separation derived from natural different facets and Au nanoparticles (TiO2 (001)/Au/GOx) achieved high sensitivities reaching 16.86 mu A mM(-1) cm(-2), an extended linear range (0.01-3 mM), and a low detection limit (0.83 mu M). In summary, the proposed route allowed for the first time the use of nanocrystal engineering in the construction of glucose biosensors with satisfactory performances, which is promising for the future fabrication of high-performance biosensors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据