4.7 Article

Cu doped ZnO nanorods with controllable Cu content by using single metal organic precursors and their photocatalytic and luminescence properties

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 691, 期 -, 页码 936-945

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2016.08.324

关键词

ZnO nanorods; Metal-organic precursor; Photodegradation; Photoluminescence

资金

  1. Ministry of Science and Technology (MOST), Taiwan [MOST 101-2221-E-006-131-MY3]

向作者/读者索取更多资源

Controlled doping into nanomaterials is an enabling technology for functional nanodevices, but still challenging. We report the accomplishment of a facial growth method of controlling Cu doping concentration into ZnO nanorod arrays systematically as an example by faith transfer of Cu content in single hybrid bimetallic organic precursors, zinc copper acetylacetonate, to the end ZnO nanorod arrays using solution method. The incorporation of Cu content is demonstrated to vary from 0 at.% to 10 at.% with a step of 2 at.%, where the control over the accuracy of Cu content can be better. The as-synthesized nanorods of around 150 nm in diameter are characterized by single crystallinity. The systematic Cu incorporation is proved by energy dispersive spectroscopy and X-ray diffraction. Photoelectron spectroscopy shows that the ratio of Cu2+ to Cu1+ varies accordingly, an increasing trend with total Cu doping concentration. The optical and photocatalytic properties of the Cu-doped ZnO nanorods are thus studied. The results reveal that the photodegradation of methyl orange is facilitated with Cu doping and the role of multi-valences of Cu ions on surface is proposed. Several unique features in photoluminescence also accompany with Cu doping, including the UV peak shift toward longer wavelength, the decrease of UV/visible intensity ratio, the increase of visible light emission and the shift of visible light emission from green to orange. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据