4.7 Article

Independent fermentation and metabolism of dietary polyphenols associated with a plant cell wall model

期刊

FOOD & FUNCTION
卷 11, 期 3, 页码 2218-2230

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9fo02987g

关键词

-

资金

  1. Vietnamese Ministry of Education and Training (VIED-MOET)
  2. University of Queensland
  3. Australian Research Council Centre of Excellence in Plant Cell Walls [CE110001007]

向作者/读者索取更多资源

Ingested polyphenols from plant-based foods are in part carried to the large intestine and metabolised by resident microbiota. This work investigated the release and microbial transformation of polyphenols adsorbed individually or in combination to apple cell walls (ACW) and pure (bacterial) cellulose (BC). BC and ACW, representing poorly- and highly-fermentable fibre models respectively, were used to investigate influences of interactions with polyphenols (cyanidin-3-glucoside, (+/-)-catechin, ferulic acid), on the release and microbial metabolism of polyphenols during in vitro digestion and fermentation. Bound polyphenols were partially released (20-70%) during simulated digestion, depending on polyphenol molecular structure. All remaining bound polyphenols were completely released and metabolised after 6-9 h by porcine large intestine microbiota, with formation of a number of intermediates and end-products. The same pathways of polyphenol microbial metabolism were observed in the presence and absence of ACW/BC, suggesting that microbial metabolism of polyphenols and carbohydrate substrates seems likely independent. Some polyphenol metabolism products were produced faster in the presence of carbohydrate fermentation, particularly of ACW. Microbial metabolism pathways of model polyphenols by a porcine faecal inoculum are not affected by being associated with BC or ACW, but the rate of metabolism is modestly enhanced with concurrent carbohydrate fermentation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据