4.7 Article

Hydrogen doped BaTiO3 films as solid-state electrolyte for micro-supercapacitor applications

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 721, 期 -, 页码 276-284

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2017.06.019

关键词

Hydrogenated barium titanate films; Proton diffusion; Electrical double-layer capacitors; Solid-state electrolyte; Micro-supercapacitors

向作者/读者索取更多资源

Solid electrolytes are important part of all -solid state energy systems that store electrical energy on the chip. They allow a direct incorporation of micro-storage component with simple device architecture while operating at higher temperatures compared to liquid electrolytes. However, solid electrolytes are usually deposited at high temperatures, exceeding the thermal budget of current semiconductor technology. Herein, we report on the synthesis of high performance BaTiO3:H films as solid state electrolyte in which we incorporate protons during a room temperature RF sputtering process. Drastic changes occur on chemical, structural and electrical properties of the films when they accommodate highly mobile and reactive protons. BaTiO3:H films have well-defined crystalline phases and display an optical bandgap which decreases by increasing the HMR in the sputtering gas. In addition, these films show two relaxation processes. The first, thermally activated with an energy around 0.5 eV, emerges at low temperature due to the proton diffusion within the oxide material. The diffusion of positively charged oxygen vacancies by overcoming an energetic barrier of about 1.1 eV yields to a second relaxation which takes place at relatively high temperature. By using carbon nanowalls as high effective area bottom electrode, we anticipate a large specific capacitance. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据