4.5 Article

A tumor-targeted nanoplatform with stimuli-responsive cascaded activities for multiple model tumor therapy

期刊

BIOMATERIALS SCIENCE
卷 8, 期 7, 页码 1865-1874

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9bm01992h

关键词

-

资金

  1. National Natural Science Foundation of China [81601606]
  2. Young Talent Support Plan of Xi'an Jiaotong University
  3. Technology Foundation for Selected Overseas Chinese Scholar of Shaanxi Province
  4. Fundamental Research Funds for the Central Universities [2016qngz02]
  5. One Hundred Talents Program of Shaanxi Province
  6. National Natural Science Foundation of Shaanxi Province [2017JM5023]
  7. open fund of the State Key Laboratory of Military Stomatology [2017KA02]
  8. Knowledge Innovation Program of Shenzhen [JCYJ20170816100941258]

向作者/读者索取更多资源

Herein, a rambutan-like nanocomplex (PDA-SNO-GA-HA-DOX, PSGHD for short) was designed to enable effective and accurate tumor therapy. The PSGHD nanocomplex consists of an S-nitrosothiol-functionalized polydopamine (PDA-SNO) core and a gambogic acid-derivatized hyaluronic acid (HA-GA) shell with doxorubicin (DOX) as the cargo. Due to the HA section, the PSGHD nanocomplex can be rapidly and selectively internalized by tumor cells instead of healthy cells in 12 h of co-incubation. After that, the internalized PSGHD nanocomplex is able to gradually release both DOX (agent for chemotherapy) and GA (agent for enhancing thermal damage) under different tumor-specific physiological conditions (low pH and rich HAase). When 808 nm NIR radiation was employed, the PSGHD nanocomplex further demonstrated excellent photothermal conversion to increase the local temperature over 43 degrees C and convert SNO to nitric oxide (NO, an agent for decreasing drug-efflux). Based on the synergistic effects of NO/DOX and GA/heat, the PSGHD nanocomplex simultaneously achieved tumor-specific low-drug-efflux chemotherapy and low-temperature photothermal therapy, resulting in an eight-fold apoptosis of tumor cells over normal cells under NIR radiation. In vivo data from mouse models further showed that the PSGHD nanocomplex can completely inhibit tumor growth and significantly prolong the survival rate of tumor bearing mice in 50 days, demonstrating the high efficiency of the PSGHD nanocomplex for tumor therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据