4.6 Article

Second-order bulk-boundary correspondence in rotationally symmetric topological superconductors from stacked Dirac Hamiltonians

期刊

PHYSICAL REVIEW B
卷 101, 期 15, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.101.155133

关键词

-

资金

  1. EPSRC
  2. ERC [678795]
  3. European Research Council (ERC) [678795] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

Two-dimensional second-order topological superconductors host zero-dimensional Majorana bound states at their boundaries. In this work, focusing on rotation-invariant crystalline topological superconductors, we establish a bulk-boundary correspondence linking the presence of such Majorana bound states to bulk topological invariants introduced by Benalcazar et al. [Phys. Rev. B 89, 224503 (2014)] We thus establish when a topological crystalline superconductor protected by rotational symmetry displays second-order topological superconductivity. Our approach is based on stacked Dirac Hamiltonians, using which we relate transitions between topological phases to the transformation properties between adjacent gapped boundaries. We find that, in addition to the bulk rotational invariants, the presence of Majorana boundary bound states in a given geometry depends on the interplay between weak topological invariants and the location of the rotation center relative to the lattice. We provide numerical examples for our predictions and discuss possible extensions of our approach.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据