4.2 Article Proceedings Paper

ON NONLOCAL LAM STRAIN GRADIENT MECHANICS OF ELASTIC RODS

出版社

BEGELL HOUSE INC
DOI: 10.1615/IntJMultCompEng.2019030655

关键词

nanocontinua; Lam strain gradient elasticity; nonlocal integral elasticity; modified nonlocal strain gradient elasticity; size effects; analytical modeling; NEMS

向作者/读者索取更多资源

Numerous contributions can be found in the recent literature exploiting the nonlocal strain gradient model, introduced in consequence of unification of the differential relation (consequent but not equivalent to Eringen nonlocal integral law) and strain gradient elasticity. In the present paper, Eringen nonlocal integral and Lam modified strain gradient theories are coupled to formulate a nonlocal Lam strain gradient model of elasticity. Three scale parameters, describing nonlocality, dilatation, and stretch gradient, are utilized to significantly estimate size-dependent responses of 1D nanocontinua. The governing constitutive law is established via a variationally consistent approach, based on suitably selected test fields, projected for formulating well-posed static and dynamic problems of engineering interest. The nonlocal Lam strain gradient model, developed for nanorods, provides axial force fields in terms of integral convolutions involving elastic axial strain fields. The integral law, equivalent to an expedient set of constitutive differential and boundary conditions, is exploited for studying static and free vibration behaviors of simple nanostructural schemes. Exact analytical solutions are gotten in terms of nonlocal and gradient characteristic parameters. Validation of the proposed strategy is carried out by comparing the contributed results with those obtained by the modified nonlocal strain gradient theory.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据