4.6 Article

Bianisotropy for light trapping in all-dielectric metasurfaces

期刊

PHYSICAL REVIEW B
卷 101, 期 20, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.101.205415

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy within the Cluster of Excellence PhoenixD [EXC 2122, 390833453]
  2. Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy within the Cluster of Excellence QuantumFrontiers [EXC 2123, 390837967]
  3. Russian Science Foundation [20-12-00343]
  4. National Key R&D Program of China [2018YFE0119900]
  5. Russian Science Foundation [20-12-00343] Funding Source: Russian Science Foundation

向作者/读者索取更多资源

Magnetoelectric dipole coupling effects in all-dielectric metasurfaces composed of particles with bianisotropic electromagnetic response are investigated. This bianisotropic response is associated with the trapped mode excitation. Maintaining the trapped mode resonant conditions allows one to sufficiently increase the quality factor and reduce radiation losses in all-dielectric nanostructures (metasurfaces). An analytical model accounting for the contributions of both electric and magnetic dipole moments induced in particles by external electromagnetic fields is proposed. We show how bianisotropy can lead to the excitation of the trapped mode in metasurfaces. This mode corresponds to the electromagnetic coupling between the out-of-plane particle dipole moments, which do not radiate collectively from the metasurface plane resulting in the enhanced storage of electromagnetic energy. Our approach reveals a physical mechanism of the trapped mode excitation and demonstrates that the specially initiated bianisotropy of particles enables the energy flow between external electromagnetic waves and the trapped mode. Due to this bianisotropy, one can control the process of light-matter interaction and energy storage in all-dielectric metasurfaces via excitation of trapped modes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据