4.6 Article

Cumulative Impacts of Proton Irradiation on the Self-heating of AlGaN/GaN HEMTs

期刊

ACS APPLIED ELECTRONIC MATERIALS
卷 2, 期 4, 页码 980-991

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsaelm.0c00048

关键词

AlGaN/GaN; radiation; degradation; self-heating; steady-state thermoreflectance; HEMT; Raman thermometry

资金

  1. Pennsylvania State University by the AFOSR Young Investigator Program [FA9550-17-1-0141]
  2. National Research Foundation of Korea [NRF2016K2A9A1A01952082]

向作者/读者索取更多资源

The impact of proton irradiation on the self-heating of AlGaN/GaN high-electron-mobility transistors (HEMTs) was studied at an energy of 1 MeV and under a fluence level of 2 x 10(15) cm(-2). Severe degradation in electrical characteristics was observed under these conditions (5x reduction in drain saturation current at V-GS = 0 V, positive shift in threshold voltage by 3.1 V). Concomitantly, an 80% increase in the device gate temperature was observed using a thermoreflectance thermal imaging technique, at a power dissipation level of 5 W/mm. One of the key contributing factors behind this exacerbated self-heating for the irradiated devices was found to be the increased electric field concentration at the drain side of the gate edge because of a higher drain-source voltage level required to operate the device at the same power density condition before irradiation. Additionally, reduction in thermal conductivity of the gallium nitride (GaN) layer and the silicon (Si) substrate led to increased thermal resistance and, hence, an increased device operating temperature. According to the stopping and range of ions in matter (SRIM) simulation, the penetration depth for the protons was similar to 8.8 mu m under the tested conditions. As the GaN/Si interface structure (including the AlGaN strain-relief layer) for the tested HEMTs was about 5 mu m away from the surface, significant damage occurred near this heterointerface. This damage resulted in an similar to 3x increase in the effective interfacial thermal boundary resistance that contributed to an additional 16% increase in device self-heating. Overall, the degradation of electrical parameters (24%), the GaN thermal conductivity (33%), the GaN/Si effective thermal boundary conductance (16%), and the Si substrate thermal conductivity (20%) contributed to the exacerbated self-heating in the irradiated AlGaN/GaN HEMT (similar to 90 degrees C) as compared to that of the reference (i.e., nonradiated) HEMT (similar to 50 degrees C), under a power density condition of 5 W/mm.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据