4.5 Article

Eddy covariance flux measurements of gaseous elemental mercury over a grassland

期刊

ATMOSPHERIC MEASUREMENT TECHNIQUES
卷 13, 期 4, 页码 2057-2074

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/amt-13-2057-2020

关键词

-

资金

  1. Institute of Agricultural Sciences, ETH Zurich
  2. Department of Environmental Geosciences, University of Basel
  3. Freiwillige Akademische Gesellschaft (FAG), Basel
  4. Swiss National Science Foundation (SNSF) Postdoc.Mobility grant [P400P2_180796]
  5. Research Fund for Junior Researchers of the University of Basel
  6. European Union Horizon 2020 Research and Innovation Programme [774124]
  7. SNSF Ambizione grant [PZ00P2_174101]
  8. Swiss National Science Foundation (SNF) [P400P2_180796, PZ00P2_174101] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

Direct measurements of the net ecosystem exchange (NEE) of gaseous elemental mercury (Hg-0) are important to improve our understanding of global Hg cycling and, ultimately, human and wildlife Hg exposure. The lack of long-term, ecosystem-scale measurements causes large uncertainties in Hg-0 flux estimates. It currently remains unclear whether terrestrial ecosystems are net sinks or sources of atmospheric Hg-0. Here, we show a detailed validation of direct Hg-0 flux measurements based on the eddy covariance technique (Eddy Mercury) using a Lumex RA-915 AM mercury monitor. The flux detection limit derived from a zero-flux experiment in the laboratory was 0.22 ng m(-2) h(-1) (maximum) with a 50% cutoff at 0.074 ng m(-2) h(-1). We present eddy covariance NEE measurements of Hg-0 over a low-Hg soil (41-75 ng Hg g(-1) in the topsoil, referring to a depth of 0-10 cm), conducted in summer 2018 at a managed grassland at the Swiss FluxNet site in Chamau, Switzerland (CH-Cha). The statistical estimate of the Hg-0 flux detection limit under outdoor conditions at the site was 5.9 ng m(-2) h(-1') (50% cutoff). We measured a net summertime emission over a period of 34 d with a median Hg-0 flux of 2.5 ng m(-2) h(-1) (with a -0.6 to 7.4 ng m(-2) h(-1) range between the 25th and 75th percentiles). We observed a distinct diel cycle with higher median daytime fluxes (8.4 ng m(-2) h(-1)) than night-time fluxes (1.0 ng m(-2) h(-1)). Drought stress during the measurement campaign in summer 2018 induced partial stomata closure of vegetation. Partial stomata closure led to a midday depression in CO2 uptake, which did not recover during the afternoon. The median CO2 flux was only 24% of the median CO2 flux measured during the same period in the previous year (2017). We suggest that partial stomata closure also dampened Hg-0 uptake by vegetation, resulting in a NEE of Hg-0 that was dominated by soil emission. Finally, we provide suggestions to further improve the precision and handling of the Eddy Mercury system in order to assure its suitability for long-term NEE measurements of Hg-0 over natural background surfaces with low soil Hg concentrations (< 100 ng g(-1)). With these improvements, Eddy Mercury has the potential to be integrated into global networks of micrometeorological tower sites (FluxNet) and to provide the long-term observations on terrestrial atmosphere Hg-0 exchange necessary to validate regional and global mercury models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据