4.7 Article

Comprehensive Transcriptome Analysis of Phytohormone Biosynthesis and Signaling Genes in the Flowers of Chinese Chinquapin (Castanea henryi)

期刊

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
卷 65, 期 47, 页码 10332-10349

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jafc.7b03755

关键词

Castanea Miller; flower development; hormone; RNA-Seq; sex differentiation; transcriptome

资金

  1. Chinese National Science and Technology Pillar Program [2013BAD14B04]
  2. Education Department of Hunan Province [17B280]
  3. USDA-ARS [CRIS 6054-41000-103-00-D]

向作者/读者索取更多资源

Chinese chinquapin (Castanea henryi) nut provides a rich source of starch and nutrients as food and feed, but its yield is restricted by a low ratio of female to male flowers. Little is known about the developmental programs underlying sex differentiation of the flowers. To investigate the involvement of phytohormones during sex differentiation, we described the morphology of male and female floral organs and the cytology of flower sex differentiation, analyzed endogenous levels of indole-3-acetic acid (IAA), gibberellins (GAs), cytokinins (CKs) and abscisic acid (ABA) in the flowers, investigated the effects of exogenous hormones on flower development, and evaluated the expression profiles of genes related to biosyntheses and signaling pathways of these four hormones using RNA-Seq combined with qPCR. Morphological results showed that the flowers consisted of unisexual and bisexual catkins, and could be divided into four developmental stages. HPLC results showed that CK accumulated much more in the female flowers than that in the male flowers; GA and ABA showed the opposite results; while IAA did not show a tendency. The effects of exogenous hormones on sex differentiation were consistent with those of endogenous hormones. RNA-Seq combined with qPCR anlyses suggest that several genes may play key roles in hormone biosynthesis and sex differentiation. This study presents the first comprehensive report of phytohormone biosynthesis and signaling during sex differentiation of C. henryi, which should provide a foundation for further mechanistic studies of sex differentiation in Castanea Miller species and other non-model plants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据