4.7 Article

Nanoencapsulation of Aloe vera in Synthetic and Naturally Occurring Polymers by Electrohydrodynamic Processing of Interest in Food Technology and Bioactive Packaging

期刊

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
卷 65, 期 22, 页码 4439-4448

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jafc.7b01393

关键词

electrospinning; electrospraying; biopolymers; Aloe vera leaf juice; encapsulation; food technology; bioactive packaging

资金

  1. Spanish Ministry of Economy and Competitiveness (MINECO) [AGL2015-63855-C2-1-R]

向作者/读者索取更多资源

This work originally reports on the use of electrohydrodynamic processing (EHDP) to encapsulate Aloe vera (AV, Aloe barbadensis Miller) using both synthetic polymers, i.e., polyvinylpyrrolidone (PVP) and poly(vinyl alcohol) (PVOH), and naturally occurring polymers, i.e., barley starch (BS), whey protein concentrate (WPC), and maltodextrin. The AV leaf juice was used as the water-based solvent for EHDP, and the resultant biopolymer solution properties were evaluated to determine their effect on the process. Morphological analysis revealed that, at the optimal processing conditions, synthetic polymers mainly produced fiber-like structures, while naturally occurring polymers generated capsules. Average sizes ranged from 100 nm to above 3 mu m. As a result of their different and optimal morphology and, hence, higher AV content, PVP, in the form of nanofibers, and WPC, of nanocapsules, were further selected to study the AV stability against ultraviolet (UV) light exposure. Fourier transform infrared (FTIR) spectroscopy confirmed the successful encapsulation of AV in the biopolymer matrices, presenting both encapsulants a high chemical interaction with the bioactive components. Ultraviolet-visible (UV-vis) spectroscopy showed that, while PVP nanofibers offered a poor effect on the AV degradation during UV light exposure (similar to 10% of stability after 5 h), WPC nanobeads delivered excellent protection (stability of >95% after 6 h). This was ascribed to positive interactions between WPC and the hydrophilic components of AV and the inherent UV-blocking and oxygen barrier properties provided by the protein. Therefore, electrospraying of food hydrocolloids interestingly appears as a novel potential nanotechnology tool toward the formulation of more stable functional foods and nutraceuticals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据