4.6 Article

Temperature-invariant superelastic, fatigue resistant, and binary-network structured silica nanofibrous aerogels for thermal superinsulation

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 8, 期 16, 页码 7775-7783

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0ta01092h

关键词

-

资金

  1. National Natural Science Foundation of China [2191101289, 51873029, 51925302]
  2. Program of Shanghai Academic Research Leader [18XD1400200]
  3. Innovation Program of Shanghai Municipal Education Commission [2017-01-07-00-03-E00024]
  4. Fundamental Research Funds for the Central Universities [CUSF-DH-D-2018023]

向作者/读者索取更多资源

Industrial thermal energy management or space exploration requires thermal insulating materials with features of low thermal conductivity, low bulk density and robust mechanical properties. However, the use of traditional organic insulation materials is hampered by their poor fire resistance while inorganic insulation ones are either stiff or display a high thermal conductivity. Herein, we design and synthesize binary-network structured silica nanofibrous aerogels (BSAs) by in situ assembly of nanoporous silica aerogels on a cellular structured silica fibrous framework. The resulting BSAs can completely recover from 80% compressive strain, displaying temperature-invariant superelasticity and robust fatigue-resistance up to 100 000 compression-release cycles. Moreover, the unique binary-network structure provides BSAs with ultralow thermal conductivity (21.96 mW m(-1) K-1), robust fire retardancy, and superior high-temperature thermal insulation performance. BSAs with a thickness of 20 mm are shown to protect bare hands placed on the opposite side, when directly exposed to butane blowtorch flame (similar to 1000 degrees C). These superior performances lead to their appealing practical application potential in energy management, thermal isolation or fire protection fields.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据