4.7 Article

Nanogap Sensors Decorated with SnO2 Nanoparticles Enable Low-Temperature Detection of Volatile Organic Compounds

期刊

ACS APPLIED NANO MATERIALS
卷 3, 期 4, 页码 3337-3346

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsanm.0c00066

关键词

nanogap sensor; gas sensing nanofabrication; tin oxide nanoparticles; dielectrophoresis; volatile organic compounds

资金

  1. Italian Ministry of Education, University and Research [0001735.13-07-2017]

向作者/读者索取更多资源

In this work, an experiment was carried out in order to exploit the physical properties of an electrode structure with nanometric gap to enable the operation of MOX sensors at low temperature independently from the gas sensing properties of the adopted active material. The 100 nm-gap fingers gas sensor array was fabricated by using electron beam and UV optical lithography onto 4 '' silicon wafers (guaranteeing high process yield). SnO2 nanoparticles (NPs) synthesized by sol-gel/solvothermal method were trapped between the nanogap electrodes by dielectrophoresis, and scanning electron microscopy and atomic force microscopy surface analysis were used to investigate the semiconducting NPs dispersion between the nanogap fingers. Nanogap SnO2 NPs based-sensor responses to acetone and ethanol in dry air carrier gas at near room temperatures were reported, discussed, and compared with those obtained from 5 mu m gap gas sensors (comparable to standard microgap commonly used in commercial sensors) functionalized with the same sensing material. The nanogap sensors exhibited better performance compared to the microgap ones, and larger response to ethanol than to acetone. For the lowest investigated gas concentration (10 ppm), the ethanol response (R-air/R-gas) increased with temperature from 2.56 at 50 degrees C to 17.91 to 100 degrees C, respectively from 1.56 to 3.92 for acetone. The best nanogap sensor responses were found at 100 degrees C with R-air/R-gas approximate to 38 for 150 ppm of ethanol, and R-air/R-gas approximate to 10 for 150 ppm of acetone. The experimental measurements confirmed the adopted theoretical model correlation between the sensor responses and the electrodes separation gap.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据