4.6 Article

Human nasal olfactory deposition of inhaled nanoparticles at low to moderate breathing rate

期刊

JOURNAL OF AEROSOL SCIENCE
卷 113, 期 -, 页码 189-200

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jaerosci.2017.08.006

关键词

Inhalation toxicity; Neurotoxicity; Nanoparticles; Nasal olfactory; Olfactory pathway; Olfactory deposition

资金

  1. National Natural Science Foundation of China [91643102]
  2. Australian Research Council [DP160101953]

向作者/读者索取更多资源

Olfactory pathway, susceptible for direct translocation of inhaled nanoparticles into the brain, has been verified in a number of animal studies over past decades. In case of toxic substances, the extremely low dose strongly suggests a subclinical condition that prevents noticeable neurodegeneration until years after prolonged exposure. The exact mechanism, between elevated presence of toxic substances (e.g. heavy metals) and deteriorated neurofunction in human central nervous system, is still not clear; however, nasal olfactory, being portal of the entry for such a transport route, is undoubtedly a critical junction where hint to the time course and dose dependency might be inferred. Using a physiologically realistic nasal and upper airway replica, this study performed human inhalation simulations of nanoparticles (1-100 nm) under low to moderate breathing conditions (5-14 L/min). Emphasis is on olfactory deposition and the various factors contributing to the process. Details on airflow pattern and particle flux in nasal and olfactory were made visible through a 2D unwrapped surface mapping technique, and it was found out that airflow pattern, especially nasal wall shear had a remarkable correlation to particle movement and deposition at the ultrafine scale (< 1-2 nm). Olfactory deposition efficiency was found to be extremely low (< 3.5%), and showed distinctive variation in high diffusivity region when compared to that in the entire nasal cavity. The entrance profile of olfactory deposited particles was seen to be highly selective and unanimously originated from upper section of the nostril near nasal septum. Current study is of significant value to the understanding of human uptake of inhaled nanoparticles through olfactory pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据