4.5 Article

Osteoprotegerin induces podosome disassembly in osteoclasts through calcium, ERK, and p38 MAPK signaling pathways

期刊

CYTOKINE
卷 71, 期 2, 页码 199-206

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.cyto.2014.10.007

关键词

Osteoprotegerin; Osteoclast; Calcium; MAPKs; Podosome

资金

  1. National Natural Science Foundation of China [31172373, 31302154, 31372495]
  2. Specialized Research Fund for the Doctoral Program of Higher Education [20113250110003]
  3. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
  4. Graduate Innovation Project of Jiangsu Province [CXZZ12_0917]

向作者/读者索取更多资源

Osteoclasts are critical for bone resorption and use podosomes to attach to bone matrix. Osteoprotegerin (OPG) is a negative regulator of osteoclast function that can affect the formation and function of podosomes. However, the signaling pathways that link OPG to podosome function have not been well characterized. Therefore, this study examined the roles of intracellular calcium and MAPKs in OPG-induced podosome disassembly in osteoclasts. We assessed the effects of the intracellular calcium chelator Bapta-AM, ERK inhibitor U0126, and p38 inhibitor SB202190 on OPG-treated osteoclast differentiation, adhesion structures, intracellular free Ca2+ concentration and the phosphorylation state of podosome associated proteins (Pyk2 and Src). Mouse monocytic RAW 264.7 cells were differentiated to osteoclasts using RANKL (30 ng/mL) and M-CSF (25 ng/mL). The cells were pretreated with Bapta-AM (5 mu M), U0126 (5 mu M), or SB202190 (10 mu M) for 30 min, followed by 40 ng/mL OPG for 3 h. Osteoclastogenesis, adhesion structure, viability and morphology, intracellular free Ca2+ concentration and the phosphorylation state of Pyk2 and Src were measured by TRAP staining, scanning electron microscopy, real-time cell analyzer, flow cytometry and western blotting, respectively. OPG significantly inhibited osteoclastogenesis, the formation of adhesion structures, and reduced the amount of phosphotylated Pyk2 and Src-pY527, but increased phosphoiylation of Src-pY416. Bapta-AM, U0126, and SB202190 partially restored osteoclast differentiation and adhesion structures. Both Bapta-AM and U0126, but not SB202190, restored the levels of intracellular free Ca2+ concentration, phosphorylated Pyk2 and Src-pY527. All three inhibitors blocked OPG-induced phosphorylation at Src-pY416. These results suggest OPG disrupts the attachment structures of osteoclasts and activates Src as an adaptor protein that competes for the reduced amount of phosphorylated Pyk2 through calcium- and ERK-dependent signaling pathways. p38 MAPK signaling may have a different role in OPG-induced osteoclast retraction. Our findings potentially offer novel insights into the signaling mechanisms downstream of OPG that affect osteoclast attachment to the extracellular matrix. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据