4.6 Article

Optical and electronic properties of low-density InAs/InP quantum-dot-like structures designed for single-photon emitters at telecom wavelengths

期刊

PHYSICAL REVIEW B
卷 101, 期 19, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.101.195304

关键词

-

资金

  1. Villum Fonden via the NATEC Centre [8692]
  2. YIP QUEENs project [VKR023442]
  3. Polish budgetary funds for science in 2018-2020 via the Diamond Grant program (Ministry for Science and Higher Education) [DI 2017 011747]
  4. Wroclaw Centre for Networking and Supercomputing [203]
  5. Polish National Agency for Academic Exchange

向作者/读者索取更多资源

Due to their band-structure and optical properties, InAs/InP quantum dots (QDs) constitute a promising system for single-photon generation at the third telecom window of silica fibers and for applications in quantum communication networks. However, obtaining the necessary low in-plane density of emitters remains a challenge. Such structures are also still less explored than their InAs/GaAs counterparts regarding optical properties of confined carriers. Here, we report on the growth via metal-organic vapor phase epitaxy and investigation of low-density InAs/InP QD-like structures, emitting in the range of 1.2-1.7 mu m which includes the S, C, and L bands of the third optical window. We observe multiple photoluminescence (PL) peaks originating from flat QDs with the height of a few material monolayers. Temperature-dependent PL reveals a redistribution of carriers between families of QDs. Via time-resolved PL, we obtain radiative lifetimes nearly independent of emission energy in contrast to previous reports on InAs/InP QDs, which we attribute to strongly height-dependent electron-hole correlations. Additionally, we observe neutral and charged exciton emission from spatially isolated emitters. Using the eight-band k.p model and configuration-interaction method, we successfully reproduce the energies of emission lines, the dispersion of exciton lifetimes, the carrier activation energies, as well as the biexciton binding energy, which allows for a detailed and comprehensive analysis of the underlying physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据