4.7 Article

Heterogeneous oxidation of amorphous organic aerosol surrogates by O3, NO3, and OH at typical tropospheric temperatures

期刊

ATMOSPHERIC CHEMISTRY AND PHYSICS
卷 20, 期 10, 页码 6055-6080

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/acp-20-6055-2020

关键词

-

资金

  1. U.S. National Science Foundation [AGS-1446286]
  2. U.S. Department of Energy, Office of Science (BER), Atmospheric System Research [DE-SC0016370]
  3. U.S. Department of Energy (DOE) [DE-SC0016370] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

Typical tropospheric temperatures render possible phase states of amorphous organic aerosol (OA) particles of solid, semisolid, and liquid. This will affect the multiphase oxidation kinetics involving the organic condensed-phase and gaseous oxidants and radicals. To quantify this effect, we determined the reactive uptake coefficients (gamma) of O-3, NO3, and OH by substrate films composed of single and binary OA surrogate species under dry conditions for temperatures from 213 to 313 K. A temperature-controlled coated-wall flow reactor coupled to a chemical ionization mass spectrometer was applied to determine gamma with consideration of gas diffusion transport limitation and gas flow entrance effects, which can impact heterogeneous reaction kinetics. The phase state of the organic substrates was probed via the poke-flow technique, allowing the estimation of the substrates' glass transition temperatures. gamma values for O-3 and OH uptake to a canola oil substrate, NO3 uptake to a levoglucosan and a levoglucosan / xylitol substrate, and OH uptake to a glucose and glucose / 1,2,6-hexanetriol substrate have been determined as a function of temperature. We observed the greatest changes in gamma with temperature for substrates that experienced the largest changes in viscosity as a result of a solid-to-liquid phase transition. Organic substrates that maintain a semisolid or solid phase state and as such a relatively higher viscosity do not display large variations in heterogeneous reactivity. From 213 to 293 K, gamma values of O-3 with canola oil, of NO3 with a levoglucosan / xylitol mixture, and of OH with a glucose / 1,2,6-hexanetriol mixture and canola oil, increase by about a factor of 34, 3, 2, and 5, respectively, due to a solid-to-liquid phase transition of the substrate. These results demonstrate that the surface and bulk lifetime of the OA surrogate species can significantly increase due to the slowed heterogeneous kinetics when OA species are solid or highly viscous in the middle and upper troposphere. This experimental study will further our understanding of the chemical evolution of OA particles with subsequent important consequences for source apportionment, air quality, and climate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据