4.5 Article

Personalized and graph genomes reveal missing signal in epigenomic data

期刊

GENOME BIOLOGY
卷 21, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s13059-020-02038-8

关键词

Personalized genomes; Genome graphs; De novo assembly; Modified reference; Reference bias; ChIP-seq; Epigenomics

资金

  1. Canadian Institutes of Health Research [EP1-120608, EP2-120609, CEE-151618]

向作者/读者索取更多资源

Background Epigenomic studies that use next generation sequencing experiments typically rely on the alignment of reads to a reference sequence. However, because of genetic diversity and the diploid nature of the human genome, we hypothesize that using a generic reference could lead to incorrectly mapped reads and bias downstream results. Results We show that accounting for genetic variation using a modified reference genome or a de novo assembled genome can alter histone H3K4me1 and H3K27ac ChIP-seq peak calls either by creating new personal peaks or by the loss of reference peaks. Using permissive cutoffs, modified reference genomes are found to alter approximately 1% of peak calls while de novo assembled genomes alter up to 5% of peaks. We also show statistically significant differences in the amount of reads observed in regions associated with the new, altered, and unchanged peaks. We report that short insertions and deletions (indels), followed by single nucleotide variants (SNVs), have the highest probability of modifying peak calls. We show that using a graph personalized genome represents a reasonable compromise between modified reference genomes and de novo assembled genomes. We demonstrate that altered peaks have a genomic distribution typical of other peaks. Conclusions Analyzing epigenomic datasets with personalized and graph genomes allows the recovery of new peaks enriched for indels and SNVs. These altered peaks are more likely to differ between individuals and, as such, could be relevant in the study of various human phenotypes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据