3.8 Article

Deep-Learning-Based Characterization of Tumor-Infiltrating Lymphocytes in Breast Cancers From Histopathology Images and Multiomics Data

期刊

JCO CLINICAL CANCER INFORMATICS
卷 4, 期 -, 页码 480-490

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1200/CCI.19.00126

关键词

-

类别

资金

  1. Indiana University Precision Health Initiative
  2. National Natural Science Foundation of China-Guangdong United Foundation of China [U1501256]

向作者/读者索取更多资源

PURPOSE Tumor-infiltrating lymphocytes (TILs) and their spatial characterizations on whole-slide images (WSIs) of histopathology sections have become crucial in diagnosis, prognosis, and treatment response prediction for different cancers. However, fully automatic assessment of TILs on WSIs currently remains a great challenge because of the heterogeneity and large size of WSIs. We present an automatic pipeline based on a cascade-training U-net to generate high-resolution TIL maps on WSIs. METHODS We present global cell-level TIL maps and 43 quantitative TIL spatial image features for 1,000 WSIs of The Cancer Genome Atlas patients with breast cancer. For more specific analysis, all the patients were divided into three subtypes, namely, estrogen receptor (ER)-positive, ER-negative, and triple-negative groups. The associations between TIL scores and gene expression and somatic mutation were examined separately in three breast cancer subtypes. Both univariate and multivariate survival analyses were performed on 43 TIL image features to examine the prognostic value of TIL spatial patterns in different breast cancer subtypes. RESULTS The TIL score was in strong association with immune response pathway and genes (eg, programmed death-1 and CLTA4). Different breast cancer subtypes showed TIL score in association with mutations from different genes suggesting that different genetic alterations may lead to similar phenotypes. Spatial TIL features that represent density and distribution of TIL clusters were important indicators of the patient outcomes. CONCLUSION Our pipeline can facilitate computational pathology-based discovery in cancer immunology and research on immunotherapy. Our analysis results are available for the research community to generate new hypotheses and insights on breast cancer immunology and development. (C) 2020 by American Society of Clinical Oncology

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据