4.6 Article

Nanoclay-functionalized 3D nanofibrous scaffolds promote bone regeneration

期刊

JOURNAL OF MATERIALS CHEMISTRY B
卷 8, 期 17, 页码 3842-3851

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9tb02814e

关键词

-

资金

  1. Department of Biomedical Engineering, University of South Dakota
  2. National Natural Science Foundation of China [31600773]

向作者/读者索取更多资源

Developing a biomaterial that can promote osteoblastic differentiation, thereby reducing the needs of exogenous osteogenic factors for large bone repair, has been a significant and long-term technical hurdle. In this study, we developed an innovative nanoclay (nanosilicate, NS)-functionalized 3D gelatin nanofibrous scaffold (GF/NS) through a thermally induced phase separation method together with the particle leaching technique (TIPS&P). In addition to the significantly higher mechanical strength, the composite scaffolds (GF/NS) demonstrated a significantly stronger ability to promote the osteogenic differentiation of human mesenchymal stem cells (hMSCs) in vitro compared to the GF scaffold. Our data further revealed that this intriguing pro-osteoblastic functionality was largely because of the unique features of NS, particularly, the strong binding ability to pro-osteoblastic factors (e.g., BMP2) as well as the intrinsic osteoinductivity of its bioactive degradation products. Most importantly, our in vivo studies indicated that GF/NS scaffolds significantly improved low-dose BMP2-induced ectopic bone regeneration in mice.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据