4.6 Article

An ultrasensitive electrochemiluminescence aptasensor for the detection of diethylstilbestrol based on the enhancing mechanism of the metal-organic framework NH2-MIL-125(Ti) in a 3,4,9,10-perylenetetracarboxylic acid/K2S2O8 system

期刊

ANALYST
卷 145, 期 9, 页码 3306-3312

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0an00212g

关键词

-

资金

  1. Natural Science Foundation of the Jiangsu Higher Education Institutions of China [18KJB150001]
  2. National Natural Science Foundation of China [51874050]
  3. Foundation of Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology [BM2012110]

向作者/读者索取更多资源

In this work, a sensitive and selective electrochemiluminescent aptasensor was proposed based on the enhancing mechanism of the metal-organic framework NH2-MIL-125(Ti) in a 3,4,9,10-perylenetetracarboxylic acid/K2S2O8 system for a diethylstilbestrol assay. Herein, 3,4,9,10-perylenetetracarboxylic acid was selected as the major luminophore, and the metal-organic framework NH2-MIL-125(Ti) displayed a large specific surface area to immobilize abundant PTCA molecules to facilitate electrochemiluminescence efficiency. Besides, the metal-organic framework NH2-MIL-125(Ti) was used as a novel catalyst in the 3,4,9,10-perylenetetracarboxylic acid/K2S2O8 system, which could react with the co-reactant K2S2O8 to produce more SO4 center dot-. In addition, we introduced the amino-aptamer of diethylstilbestrol; due to the specific binding affinity between the aptamer and diethylstilbestrol, a selective electrochemiluminescent aptasensor for diethylstilbestrol was thus developed here. Under the optimal conditions, a wide detection range from 1.0 fM to 1.0 mu M with a low detection limit of 0.28 fM (S/N = 3) was obtained. More importantly, the residual diethylstilbestrol in water was detected by the developed aptasensor; this confirmed that this method has good performance and potential applications in real samples.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据