4.6 Review

Recent progress on MOF-derived carbon materials for energy storage

期刊

CARBON ENERGY
卷 2, 期 2, 页码 176-202

出版社

WILEY
DOI: 10.1002/cey2.44

关键词

carbon materials; energy storage and conversion; metal-organic frameworks

资金

  1. Shenzhen Science and Technology Innovation Commission [JCYJ20180507181806316]
  2. City University of Hong Kong under project Fundamental Investigation of Phase Transformative Materials for Energy Application [9610399]
  3. Shenzhen Research Institute, City University of Hong Kong

向作者/读者索取更多资源

Metal-organic frameworks (MOFs) are of quite a significance in the field of inorganic-organic hybrid crystals. Especially, MOFs have attracted increasing attention in recent years due to their large specific surface area, desirable electrical conductivity, controllable porosity, tunable geometric structure, and excellent thermal/chemical stability. Some recent studies have shown that carbon materials prepared by MOFs as precursors can retain the privileged structure of MOFs, such as large specific surface area and porous structure and, in contrast, realize in situ doping with heteroatoms (eg, N, S, P, and B). Moreover, by selecting appropriate MOF precursors, the composition and morphology of the carbon products can be easily adjusted. These remarkable structural advantages enable the great potential of MOF-derived carbon as high-performance energy materials, which to date have been applied in the fields of energy storage and conversion systems. In this review, we summarize the latest advances in MOF-derived carbon materials for energy storage applications. We first introduce the compositions, structures, and synthesis methods of MOF-derived carbon materials, and then discuss their applications and potentials in energy storage systems, including rechargeable lithium/sodium-ion batteries, lithium-sulfur batteries, supercapacitors, and so forth, in detail. Finally, we put forward our own perspectives on the future development of MOF-derived carbon materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据