3.8 Article

Facile Fabrication of Amino-Functionalized Silicon Flakes for Removal of Organophosphorus Herbicide: In Silico Optimization

期刊

出版社

SPRINGERNATURE
DOI: 10.1007/s41101-020-00085-7

关键词

Rice husks; Silicon NPs; Glyphosate; Adsorption; ANN multi-layer perceptron

资金

  1. Swami Vivekananda Scholarship
  2. University of Burdwan, West Bengal, India

向作者/读者索取更多资源

In the present study, a toxic herbicide (glyphosate) was remediated through adsorption using biogenic conversion of amino-functionalized silica nanoparticles (silica NPs). The glyphosate adsorption and silica NPs were characterized using kinetics, isotherm and thermodynamics models, pH zero point charge measurements, BET surface analysis, X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy/energy-dispersive X-ray spectroscopy and regeneration study. The adsorption data were optimized by ANN multi-layer perceptron and multiple linear regression. The equilibrium glyphosate adsorption data were fitted to Freundlich, Langmuir, Temkin and Dubinin-Radushkevich (D-R) isotherm models. The adsorption capacity values recorded for the Freundlich and Langmuir models were 233.34 L/mg and 212.76 mg/g, respectively, at the maximum saturation dose. The fast rate-determining kinetics data were described by a pseudo-second-order model at different concentrations. The thermodynamics parameters clearly revealed that the adsorption of glyphosate was endothermic and spontaneous in nature. Finally, the optimized conditions were recorded as follows: initial glyphosate concentration 39.99 mg/L, pH 12.66, dose 0.299 g, contact time 60 min, and temperature 100 degrees C, with 98.99% removal. More importantly, the silicon NPs were easily recovered in different media, with acetic acid medium showing excellent regeneration. The present findings suggest that silicon NPs are a promising adsorbent for glyphosate removal from aqueous solutions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据