4.8 Article

Bioactive antibacterial silica-based nanocomposites hydrogel scaffolds with high angiogenesis for promoting diabetic wound healing and skin repair

期刊

THERANOSTICS
卷 10, 期 11, 页码 4929-4943

出版社

IVYSPRING INT PUBL
DOI: 10.7150/thno.41839

关键词

silica-based biomaterials; bioactive scaffolds; multifunctional properties; diabetic wound healing; tissue engineering

资金

  1. National Natural Science Foundation of China [51872224]
  2. Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University [2018LHM-KFKT004]
  3. Wenzhou Science & Technology Bureau project [ZY2019003]

向作者/读者索取更多资源

Diabetic wound repair and skin regeneration remains a worldwide challenge due to the impaired functionality of re-vascularization. Methods: This study reports a bioactive self-healing antibacterial injectable dual-network silica-based nanocomposite hydrogel scaffolds that can significantly enhance the diabetic wound healing/skin tissue formation through promoting early angiogenesis without adding any bioactive factors. The nanocomposite scaffold comprises a main network of polyethylene glycol diacrylate (PEGDA) forming scaffolds, with an auxiliary dynamic network formed between bioactive glass nanoparticles containing copper (BGNC) and sodium alginate (ALG) (PABC scaffolds). Results: PABC scaffolds exhibit the biomimetic elastomeric mechanical properties, excellent injectabilities, self-healing behavior, as well as the robust broad-spectrum antibacterial activity. Importantly, PABC hydrogel significantly promoted the viability, proliferation and angiogenic ability of endothelial progenitor cells (EPCs) in vitro. In vivo, PABC hydrogel could efficiently restore blood vessels networks through enhancing HIF-1 alpha/VEGF expression and collagen matrix deposition in the full-thickness diabetic wound, and significantly accelerate wound healing and skin tissue regeneration. Conclusion: The prominent multifunctional properties and angiogenic capacity of PABC hydrogel scaffolds enable their promising applications in angiogenesis-related regenerative medicine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据