4.8 Article

The impact of elevated CO2 on Prochlorococcus and microbial interactions with 'helper' bacterium Alteromonas

期刊

ISME JOURNAL
卷 12, 期 2, 页码 520-531

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/ismej.2017.189

关键词

-

资金

  1. National Science Foundation Biological Oceanography Program [OCE13-14336, OCE 1233964, OCE 1540158]
  2. WSL PURE
  3. Columbia University's Center for Climate and Life

向作者/读者索取更多资源

Prochlorococcus is a globally important marine cyanobacterium that lacks the gene catalase and relies on 'helper' bacteria such as Alteromonas to remove reactive oxygen species. Increasing atmospheric CO2 decreases the need for carbon concentrating mechanisms and photorespiration in phytoplankton, potentially altering their metabolism and microbial interactions even when carbon is not limiting growth. Here, Prochlorococcus (VOL4, MIT9312) was co-cultured with Alteromonas (strain EZ55) under ambient (400 p.p.m.) and elevated CO2 (800 p.p.m.). Under elevated CO2, Prochlorococcus had a significantly longer lag phase and greater apparent die-offs after transfers suggesting an increase in oxidative stress. Whole-transcriptome analysis of Prochlorococcus revealed decreased expression of the carbon fixation operon, including carboxysome subunits, corresponding with significantly fewer carboxysome structures observed by electron microscopy. Prochlorococcus co-culture responsive gene 1 had significantly increased expression in elevated CO2, potentially indicating a shift in the microbial interaction. Transcriptome analysis of Alteromonas in co-culture with Prochlorococcus revealed decreased expression of the catalase gene, known to be critical in relieving oxidative stress in Prochlorococcus by removing hydrogen peroxide. The decrease in catalase gene expression was corroborated by a significant similar to 6-fold decrease in removal rates of hydrogen peroxide from co-cultures. These data suggest Prochlorococcus may be more vulnerable to oxidative stress under elevated CO2 in part from a decrease in ecosystem services provided by heterotrophs like Alteromonas. This work highlights the importance of considering microbial interactions in the context of a changing ocean.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据