4.2 Article

Reaching the quantum Hall regime with rotating Rydberg-dressed atoms

期刊

PHYSICAL REVIEW RESEARCH
卷 2, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevResearch.2.023290

关键词

-

资金

  1. Villum Foundation [25310]
  2. EPSRC [EP/N03404X/1]
  3. WissenschaftlerRuckkehrprogramm GSO/CZS of the Carl-Zeiss-Stiftung
  4. German Scholars Organization e.V
  5. EPSRC [EP/N03404X/1] Funding Source: UKRI

向作者/读者索取更多资源

Despite the striking progress in the field of quantum gases, one of their much anticipated applications-the simulation of quantum Hall states-remains elusive: all experimental approaches so far have failed in reaching a sufficiently small ratio between atom and vortex densities. In this paper we consider rotating Rydberg-dressed atoms in magnetic traps: these gases offer strong and tunable nonlocal repulsive interactions and very low densities; hence they provide an exceptional platform to reach the quantum Hall regime. Based on the Lindemann criterion and the analysis of the interplay of the length scales of the system, we show that there exists an optimal value of the dressing parameters that minimizes the ratio between the filling factor of the system and its critical value to enter the Hall regime, thus making it possible to reach this strongly correlated phase for more than 1000 atoms under realistic conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据