4.7 Article

Enhanced NO2 sensing performance of S-doped biomorphic SnO2 with increased active sites and charge transfer at room temperature

期刊

INORGANIC CHEMISTRY FRONTIERS
卷 7, 期 10, 页码 2031-2042

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0qi00119h

关键词

-

资金

  1. Program for Innovative Research Team in Chinese Universities [IRT1237]
  2. National Natural Science Foundation of China [2167010747, 21671060]
  3. Natural Science Foundation of Heilongjiang Province [LH2019B030]
  4. Applied Technology Research and Development Program Foreign Cooperation Project of Heilongjiang Province [WB15C101]
  5. Program for Key Laboratory of Functional Inorganic Material Chemistry

向作者/读者索取更多资源

S-Doped biomorphic SnO2 was synthesized using biomass carbon as a template, where the biomorphic SnO2 adopts the morphology of the biomass. After the in situ growth of hexagonal or semi-hexagonal SnS2 on biomorphic SnO2, the structure of the bio-template was retained. This method is simple, eco-friendly, and cost-effective. The S-termination of SnS2 can effectively react with NO2 and thereby improve the gas sensing performance. As expected, the gas sensing performance significantly increased. The S-doped biomorphic SnO2 shows an excellent response to 100 ppm NO2 (similar to 57.38), a fast response time (similar to 1.60 s), and a low detection limit of as low as 10 ppb at room temperature (RT). The gas sensing performance exhibited strong dependence on the number of S-Sn-O chemical bonds. S-Sn-O chemical bonds can be regarded as bridges for electron transport. Chemical bonds reduced the interface state density and increased the carrier density, resulting in more chemisorbed oxygen and led to more NO2 reacting with the S-BCS-600 sensor at RT.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据