4.7 Article

Dynamics of Magnus-dominated particle clusters, collisions, pinning, and ratchets

期刊

PHYSICAL REVIEW E
卷 101, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.101.062602

关键词

-

资金

  1. US Department of Energy through the Los Alamos National Laboratory
  2. National Nuclear Security Admin-istration of the US Department of Energy [892333218NCA000001]

向作者/读者索取更多资源

Motivated by the recent work in skyrmions and active chiral matter systems, we examine pairs and small clusters of repulsively interacting point particles in the limit where the dynamics is dominated by the Magnus force. We find that particles with the same Magnus force can form stable pairs, triples, and higher ordered clusters or exhibit chaotic motion. For mixtures of particles with opposite Magnus force, particle pairs can combine to form translating dipoles. Under an applied drive, particles with the same Magnus force translate; however, particles with different or opposite Magnus force exhibit a drive-dependent decoupling transition. When the particles interact with a repulsive obstacle, they can form localized orbits with depinning or unwinding transitions under an applied drive. We examine the interaction of these particles with clusters or lines of obstacles and find that the particles can become trapped in orbits that encircle multiple obstacles. Under an ac drive, we observe a series of ratchet effects, including ratchet reversals, for particles interacting with a line of obstacles due to the formation of commensurate orbits. Finally, in assemblies of particles with mixed Magnus forces of the same sign, we find that the particles with the largest Magnus force become localized in the center of the cluster, while for mixtures with opposite Magnus forces, the motion is dominated by transient local pairs or clusters, where the translating pairs can be regarded as a form of active matter.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据