4.6 Article

DFT modelling of explicit solid-solid interfaces in batteries: methods and challenges

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 22, 期 19, 页码 10412-10425

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9cp06485k

关键词

-

资金

  1. Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DESC0001160]
  2. Laboratory Directed Research and Development Program at Sandia National Laboratories
  3. U.S. Department of Energy National Nuclear Security Administration [DE-NA0003525]
  4. Advanced Strategic Computing (ASC) Program

向作者/读者索取更多资源

Density Functional Theory (DFT) calculations of electrode material properties in high energy density storage devices like lithium batteries have been standard practice for decades. In contrast, DFT modelling of explicit interfaces in batteries arguably lacks universally adopted methodology and needs further conceptual development. In this paper, we focus on solid-solid interfaces, which are ubiquitous not just in all-solid state batteries; liquid-electrolyte-based batteries often rely on thin, solid passivating films on electrode surfaces to function. We use metal anode calculations to illustrate that explicit interface models are critical for elucidating contact potentials, electric fields at interfaces, and kinetic stability with respect to parasitic reactions. The examples emphasize three key challenges: (1) the dirty nature of most battery electrode surfaces; (2) voltage calibration and control; and (3) the fact that interfacial structures are governed by kinetics, not thermodynamics. To meet these challenges, developing new computational techniques and importing insights from other electrochemical disciplines will be beneficial.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据