4.6 Article

Prethermal memory loss in interacting quantum systems coupled to thermal baths

期刊

PHYSICAL REVIEW B
卷 101, 期 22, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.101.220302

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) [FOR 2414, 277974659]

向作者/读者索取更多资源

We study the relaxation dynamics of an extended Fermi-Hubbard chain with a strong Wannier-Stark potential tilt coupled to a bath. When the system is subjected to dephasing noise, starting from a pure initial state the system's total von Neumann entropy is found to grow monotonously. The scenario becomes rather different when the system is coupled to a thermal bath of finite temperature. Here, for sufficiently large field gradients and initial energies, the entropy peaks in time and almost reaches its largest possible value (corresponding to the maximally mixed state), long before the system relaxes to thermal equilibrium. This entropy peak signals an effective prethermal memory loss and, relative to the time where it occurs, the system is found to exhibit a simple scaling behavior in space and time. By comparing the system's dynamics to that of a simplified model, the underlying mechanism is found to be related to the localization property of the Wannier-Stark system, which favors dissipative coupling between eigenstates that are close in energy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据