4.6 Article

On the role of moisture in triggering out-of-plane displacement in paper: From the network level to the macroscopic scale

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijsolstr.2017.04.005

关键词

Paper; Fibrous network; Multi-scale; Hygro-mechanics; Out-of-plane bending; Buckling; Instability

向作者/读者索取更多资源

The response of paper to humidity variations is a complex, inherently multi-scale problem. The hygroscopic swelling of individual fibres and their interactions within the fibrous network govern the macroscopic, sheet-level response. At this scale, moisture induced instabilities and out-of-plane deformations may occur, which are critical for a number of industrial applications. This work specifically focuses on several aspects of this important issue. A macroscopic phenomenological hygro-mechanical model is first proposed, which aims at predicting moisture induced out-of-plane deformations in paper sheets. The constitutive model is based on the relation between these deformations and typical irreversible phenomena associated to the history of paper manufacturing, i.e. the release of dried-in strains. The model is used to describe bending induced by moisture gradients through the thickness of the sheet as well as buckling due to moisture variation in the presence of mechanical constraints. The results of the model show that the anisotropic sheet-level hygro-expansion has a strong influence on the instability phenomena. Moreover, a comparison with experiments provides adequate semi-quantitative estimates. An additional step is made towards the multi-scale understanding of paper hygro-mechanics. The fundamental physical mechanisms governing the macroscopic moisture induced response are investigated on the basis of the underlying fibrous network. To this aim, a meso-structural model is developed which consists of a network of fibres randomly positioned in a planar region according to an orientation probability density function. A series of network simulations reveals that upon moisture content variations the expansion of the inter-fibre bonding regions essentially drives the overall deformation. Particularly in the case of anisotropic fibre orientation, this explains the origin of the macro-scale anisotropic hygro-expansion, which is essential for the observed sheet-level instability phenomena. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据