4.6 Article

Propagation of Rayleigh-Lamb waves in multilayered plates through a multiscale structural model

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijsolstr.2017.06.020

关键词

Wave propagation; Dispersion; Laminate; Plate theory; Zig-zag; Homogenization; Interfaces

资金

  1. U.S. Office of Naval Research [N00014-14-1-0254]
  2. (MURST) Italian Department for University and Scientific and Technological Research
  3. MIUR [2015LYYXA8]

向作者/读者索取更多资源

The propagation of plane-strain harmonic waves in multilayered plates is studied using a multiscale approach which couples an equivalent first-order single-layer theory and a discrete-layer cohesive-interface model using a homogenization technique to enforce continuity conditions on tractions at the layer interfaces. The model captures the effects of the inhomogeneous material structure and the presence of interfacial imperfections on local fields and global behavior through homogenized equilibrium equations which depend on the kinematic variables of the equivalent single-layer theory only. The equations are tractable and frequency equations and dispersion curves are derived in closed-form for plates with an arbitrary number of layers, interfacial imperfections and layup anisotropy. Among the advantages of the multiscale treatment over classical structural approaches: prediction of lowest modes is accurate over a larger range of frequencies and material inhomogeneities; the correction factors in the low-frequency regime are independent of the layup and accurate explicit expressions are derived for the first two cut-off frequencies; zig-zag displacement fields and jumps at the imperfect interfaces are reproduced; changes in modes of propagation and reduction of the cut-off frequencies due to softer layers, adhesives or de laminations are captured. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据