3.8 Article

Mass flow during fire experiments in a model-scale mine drift with longitudinal ventilation

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/25726668.2020.1766302

关键词

Throttle effect; mine drift; mass flow; heat release rate; longitudinal ventilation; ventilation velocity

资金

  1. Sustainable Minerals Institute, The University of Queensland

向作者/读者索取更多资源

Fires in underground mines may cause dangerous phenomena to mining personnel. One of these phenomena is the throttle effect, reducing the mass flow. This paper investigates the nature of the throttle effect. Data was provided from fire experiments in a model-scale mine drift. With an increasing heat release rate the reduction in the mass flow will increase. An increasing ventilation velocity may initially cause a reduction of the mass flow. With a further increase of the flow velocity the mitigating effect of the forced flow will increase. A dimensional analysis resulted in an equation where the mass flow reduction could be reasonably well described. It was found that the flow velocity had a weak effect on the mass flow reduction. Nevertheless, the flow velocity influence the initiation of the reduced mass flow. A full-scale flow velocity of 3.5 m/s was found to prevent the throttle effect for typical fires underground.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据