4.6 Article

A Multidirectional LSTM Model for Predicting the Stability of a Smart Grid

期刊

IEEE ACCESS
卷 8, 期 -, 页码 85454-85463

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/ACCESS.2020.2991067

关键词

Multidirectional long short-term memory (MLSTM); machine learning (ML); smart grid (SG); cyber physical systems (CPS)

资金

  1. Department of Corporate and Information Services, NTG of Australia

向作者/读者索取更多资源

The grid denotes the electric grid which consists of communication lines, control stations, transformers, and distributors that aids in supplying power from the electrical plant to the consumers. Presently, the electric grid constitutes humongous power production units which generates millions of megawatts of power distributed across several demographic regions. There is a dire need to efficiently manage this power supplied to the various consumer domains such as industries, smart cities, household and organizations. In this regard, a smart grid with intelligent systems is being deployed to cater the dynamic power requirements. A smart grid system follows the Cyber-Physical Systems (CPS) model, in which Information Technology (IT) infrastructure is integrated with physical systems. In the scenario of the smart grid embedded with CPS, the Machine Learning (ML) module is the IT aspect and the power dissipation units are the physical entities. In this research, a novel Multidirectional Long Short-Term Memory (MLSTM) technique is being proposed to predict the stability of the smart grid network. The results obtained are evaluated against other popular Deep Learning approaches such as Gated Recurrent Units (GRU), traditional LSTM and Recurrent Neural Networks (RNN). The experimental results prove that the MLSTM approach outperforms the other ML approaches.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据