4.6 Article

Phonon-mediated superconductivity in doped monolayer materials

期刊

PHYSICAL REVIEW B
卷 101, 期 21, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.101.214513

关键词

-

资金

  1. Research Council of Norway [250985, 262633]

向作者/读者索取更多资源

Insight into why superconductivity in pristine and doped monolayer graphene seems strongly suppressed has been central for the recent years' various creative approaches to realize superconductivity in graphene and graphene-like systems. We provide further insight by studying electron-phonon coupling and superconductivity in doped monolayer graphene and hexagonal boron nitride based on intrinsic phonon modes. Solving the graphene gap equation using a detailed model for the effective attraction based on electron tight binding and phonon force constant models, the various system parameters can be tuned at will. Consistent with results in the literature, we find slight gap modulations along the Fermi surface, and the high-energy phonon modes are shown to be the most significant for the superconductivity instability. The Coulomb interaction plays a major role in suppressing superconductivity at realistic dopings. Motivated by the direct onset of a large density of states at the Fermi surface for small charge dopings in hexagonal boron nitride, we also calculate the dimensionless electron-phonon coupling strength there, but the comparatively large density of states cannot immediately be capitalized on, and the charge doping necessary to obtain significant electron-phonon coupling is similar to the value in graphene.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据