4.2 Article

Protection of parity-time symmetry in topological many-body systems: Non-Hermitian toric code and fracton models

期刊

PHYSICAL REVIEW RESEARCH
卷 2, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevResearch.2.033022

关键词

-

资金

  1. National Science Foundation [DMR-1664842]

向作者/读者索取更多资源

In the study of PT-symmetric quantum systems with non-Hermitian perturbations, one of the most important questions is whether eigenvalues stay real or whether PT symmetry is spontaneously broken when eigenvalues meet. A particularly interesting set of eigenstates is provided by the degenerate ground-state subspace of systems with topological order. In this paper, we present simple criteria that guarantee the protection of PT symmetry and, thus, the reality of the eigenvalues in topological many-body systems. We formulate these criteria in both geometric and algebraic form and demonstrate them using the toric code and several different fracton models as examples. Our analysis reveals that PT symmetry is robust against a remarkably large class of non-Hermitian perturbations in these models; this is particularly striking in the case of fracton models due to the exponentially large number of degenerate states.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据