4.6 Article

Single-component and competitive adsorption of tetracycline and Zn(ii) on an NH4Cl-induced magnetic ultra-fine buckwheat peel powder biochar from water: studies on the kinetics, isotherms, and mechanism

期刊

RSC ADVANCES
卷 10, 期 35, 页码 20427-20437

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0ra02346a

关键词

-

资金

  1. National Natural Science Foundation of China [51874168, 51574146]

向作者/读者索取更多资源

Single-component and competitive adsorption of tetracycline (TC) and Zn(ii) on an NH4Cl-induced magnetic ultra-fine buckwheat peel powder biochar (NH4Cl-BHP-char/Fe3O4) was investigated in batch experiments. NH4Cl-BHP-char/Fe3O4 exhibited a large surface area of 1119.097 m(2) g(-1) and a total pore volume of 0.139 cm(3) g(-1) and was easily separated from aqueous solution using a magnet. Also, adsorption was endothermic, spontaneous, and highly pH-dependent. The optimum pH of the single-component adsorption of TC and Zn(ii) was 4.0 and 6.5, respectively, and the optimum pH of co-adsorption was 6.0. The kinetics studies showed the prepared biochar could be rapidly adsorbed within 60 min, and chemical adsorption was dominant. For single-component adsorption, the maximum adsorption capacities of TC and Zn(ii) were 106.38 and 151.52 mg g(-1), respectively, and they underwent monolayer adsorption on the biochar surface. Moreover, for competitive adsorption, maximum TC and Zn(ii) adsorption capacities of 126.58 and 357.14 mg g(-1) were achieved. Both film diffusion and intra-particle diffusion were found to be significant processes to facilitate adsorption. TC and Zn(ii) promoted the adsorption of each other. The proposed biochar could be used repeatedly for at least four cycles. All these results demonstrated that developed NH4Cl-BHP-char/Fe3O4 was regarded as a low-cost alternative adsorbent to remove the heavy metal ions and antibiotic pollutants from water or wastewater.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据