4.4 Article

Proteomic analysis of theS. cerevisiaeresponse to the anticancer ruthenium complex KP1019

期刊

METALLOMICS
卷 12, 期 6, 页码 876-890

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0mt00008f

关键词

-

资金

  1. National Institutes of Health [P30CA013148]
  2. UAB Institutional Core Funding Mechanism
  3. National Science Foundation [1229016]
  4. BSC rise3 stipend program
  5. Div Of Biological Infrastructure
  6. Direct For Biological Sciences [1229016] Funding Source: National Science Foundation

向作者/读者索取更多资源

Like platinum-based chemotherapeutics, the anticancer ruthenium complex indazoliumtrans-[tetrachlorobis(1H-indazole)ruthenate(iii)], or KP1019, damages DNA, induces apoptosis, and causes tumor regression in animal models. Unlike platinum-based drugs, KP1019 showed no dose-limiting toxicity in a phase I clinical trial. Despite these advances, the mechanism(s) and target(s) of KP1019 remain unclear. For example, the drug may damage DNA directly or by causing oxidative stress. Likewise, KP1019 binds cytosolic proteins, suggesting DNA is not the sole target. Here we use the budding yeastSaccharomyces cerevisiaeas a model in a proteomic study of the cellular response to KP1019. Mapping protein level changes onto metabolic pathways revealed patterns consistent with elevated synthesis and/or cycling of the antioxidant glutathione, suggesting KP1019 induces oxidative stress. This result was supported by increased fluorescence of the redox-sensitive dye DCFH-DA and increased KP1019 sensitivity of yeast lacking Yap1, a master regulator of the oxidative stress response. In addition to oxidative and DNA stress, bioinformatic analysis revealed drug-dependent increases in proteins involved ribosome biogenesis, translation, and protein (re)folding. Consistent with proteotoxic effects, KP1019 increased expression of a heat-shock element (HSE)lacZreporter. KP1019 pre-treatment also sensitized yeast to oxaliplatin, paralleling prior research showing that cancer cell lines with elevated levels of translation machinery are hypersensitive to oxaliplatin. Combined, these data suggest that one of KP1019's many targets may be protein metabolism, which opens up intriguing possibilities for combination therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据