4.6 Article

Understanding ionic mesophase stabilization by hydration: a solid-state NMR study

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 22, 期 24, 页码 13408-13417

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0cp01511c

关键词

-

资金

  1. Swedish Research Council VR [2017-04278]
  2. Russian Foundation for Basic Research [17-03-00057]
  3. Swedish Research Council [2017-04278] Funding Source: Swedish Research Council

向作者/读者索取更多资源

The correlation between the water contribution to hydrogen bonding within ionic sublayer, mesophase order parameter, and ion translational self-diffusion in the layered ionic liquid crystalline phase is investigated. Changes in hydrogen bonding, conformational and translational dynamics, and orientational order upon hydration were followed by solid-state NMR combined with density functional theory (DFT) analysis. We observed that the smectic mesophase of monohydrated imidazolium-based ionic liquids, which was stabilized in a wider temperature range compared to that of anhydrous materials, counterintuitively exhibited a lower orientational order of organic cations. Thus the role of anisotropic alignment of cations and contribution of dispersion forces in the mesophase stability decreased upon hydration. The local dynamics of cations is controlled by the alignment of the bulky methyl-imidazolium ring, experiencing strong electrostatic and H-bond interactions in the ionic sublayer. Anisotropy of translational diffusion increased in the hydrated samples, thus supporting the layer-stabilizing effect of water. The effect of decreasing molecular order is outweighed by the contribution of water hydrogen bonding to the overall interaction energy within the ionic sublayer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据