4.6 Review

Materials for the photoluminescent sensing of rare earth elements: challenges and opportunities

期刊

JOURNAL OF MATERIALS CHEMISTRY C
卷 8, 期 24, 页码 7975-8006

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0tc01939a

关键词

-

资金

  1. Department of Energy, National Energy Technology Laboratory, an agency of the United States Government
  2. National Energy Technology Research Participation Program - U.S. Department of Energy

向作者/读者索取更多资源

Rare earth elements (REEs) are widely used in high-performance technologies including wind turbine magnets, electric vehicle batteries, lighting displays, circuitry, and national defense systems. A combination of projected increasing demand for REEs, monopolistic economic conditions, and environmental hazards associated with the mining and separation of REEs has led to significant interest in recovering REEs from alternative sources such as coal waste streams. However, rapidly locating high-value waste streams in the field remains a significant challenge primarily because of slow analytical methods, and existing techniques with low limits of detection such as inductively-coupled plasma mass spectrometry suffer from high equipment and operating costs and a lack of portability. Alternatively, luminescence-based sensors for REEs present a potential path for sensitive, portable, low-cost detection. The development and design of materials suitable for the luminescence-based detection of REEs are crucial to realizing this potential. Here, we review a broad range of materials used (or that have the potential to be used) for REE luminescence-based detection, including organic compounds, biomolecules, polymers, metal complexes, nanoparticles, and metal-organic frameworks. A general overview of REE optoelectronic properties and luminescent sensing protocols is first presented, followed by analyses of material-specific sensing mechanisms, emphasizing sensing figures of merit including sensitivity, selectivity, reusability and portability. The review concludes with a discussion of remaining barriers to luminescent REE sensing, how each sensor class may be best deployed, and directions for future material and spectrometer design. Taken together, this review provides a broad overview of sensing materials and methods that should be foundational for the continued development of high-performance sensors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据