4.6 Review

Mechanistic aspects of saccharide dehydration to furan derivatives for reaction media design

期刊

RSC ADVANCES
卷 10, 期 40, 页码 23720-23742

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0ra03892j

关键词

-

资金

  1. European Regional Development Fund [F_436, BIOMAT_3]
  2. Walloon Region [F_436, BIOMAT_3]
  3. Interreg [Biomat] Funding Source: Interreg

向作者/读者索取更多资源

The conversion of abundant hexoses (e.g.glucose, mannose and galactose) and pentoses (e.g.xylose and arabinose) to 5-hydroxymethylfurfural (5-HMF) and 2-furfural (2-F) is subject to intensive research in the hope of achieving competitive production of diverse materials from renewable resources. However, the abundance of literature on this topic as well as the limited number of studies systematically comparing numerous monosaccharides hinder progress tracking. Herein, we compare and rationalize reactivities of different ketoses and aldoses. Dehydration mechanisms of both monosaccharide types are reviewed regarding the existing experimental evidence. Ketose transformation to furan derivatives likely proceeds through cyclic intermediates and is hindered by side-reactions such as isomerization, retro-aldol reactions and polymerization. Different strategies can improve furan derivative synthesis from ketoses: limiting the presence of water, improving the dehydration rate, protecting 5-HMF and 2-F reactive moieties with derivatization or solvent interactions and extracting 5-HMF and 2-F from the reaction medium. In contrast to ketoses, aldose conversion to furan derivatives is not favored compared to polymerization reactions because it involves their isomerization or a ring contraction. Enhancing aldose isomerization is possible with metal catalysts (e.g.CrCl3) promoting a hydride shift mechanism or with boric/boronic acids promoting an enediol mechanism. This catalysis is however far more challenging than ketose dehydration because catalyst activity depends on numerous factors: Bronsted acidity of the medium, catalyst ligands, catalyst affinity for monosaccharides and their accessibility to several chemical species simultaneously. Those aspects are methodically addressed to support the design of new monosaccharide dehydration systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据